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Abstract

Partial melting occurs beneath mid-ocean ridges in
Earth’s mantle and the resulting liquid migrates to
the surface to form new oceanic crust. In this system,
mass can be exchanged between the liquid and solid
phases through melting and solidification and, at the
high temperatures and pressures associated with the
Earth’s interior, the solid matrix deforms through the
process of compaction which may have a significant
effect on the transport of the liquid phase. In this
contribution, we present a 2D COMSOL model in-
corporating the effects of compaction and melting
and we address the geologically-important issue of
the formation and stability of melt channels beneath
mid-ocean ridges.

1 Introduction

Melt percolating through a solid porous layer is an
important process in a number of geological settings
(Phillips, 1991). In some situations, such as in melt-
ing of the uppermost mantle and in magma chambers
(Shirley, 1986), the solid matrix may itself deform
and flow though viscous creep processes (McKen-

zie, 1984). In such situations, the deformation of
the solid matrix may significantly affect the flow of
liquid through its interstices. McKenzie (1984) pre-
sented the equations necessary to model porous flow
through compacting media. The fluid and solid ma-
trix are modeled as two interpenetrating fluids with
viscosities that differ by orders of magnitude.

Pressure-release melting occurs in the uppermost
30-km of the Earth’s mantle beneath mid-ocean

ridges and the melt percolates to the surface to form
new oceanic crust. Geological evidence suggests that
the melt is transported rapidly, likely through high
permeability conduits or channels (Aharanov et al.,
1995). Spiegelman et al. (2001) showed that such
channels could be produced by dissolution if the sat-
uration concentration of a solute is a decreasing func-
tion of pressure. The compaction of the surrounding
porous layer should eventually destroy the high per-
meability channels, however.

In what follows we will first describe a 2D model,
implemented in COMSOL, for the transport of a fluid
in a compacting porous layer. In section 3 we use
the model to examine the longevity of a pre-existing
channel in the presence of compaction effects while in
section 4 we couple the model with a heat-transport
equation to see if pressure-release melting can cause
the spontaneous formation of channels.

2 Governing Equations

We begin with the ”classic” compaction equations
introduced by McKenzie (1984). These consists of
force balance equations for the fluid and solid phases
(equations (A20) and (A21) in McKenzie (1984)).
The equation governing the velocity of the liquid
phase relative to the solid matrix can be written using
Darcy’s law

v − V = −
kφ

µφ
∇P. (1)

Here, v is the pore velocity of the fluid phase while V

is the velocity of the matrix, P is the non-hydrostatic
pressure and φ is porosity. The variables kφ and µ
represent the permeability of the porous network, and
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the viscosity of the fluid phase.
The force balance equation for the solid phase can

be written using tensor notation as

∂

∂xj
[(ζx

−2/3ηx)
∂Vk

∂xk
(1−φ)δij+ηx(1−φ)(

∂Vi

∂xj
+

∂Vj

∂xi
)]

−
∂P

∂xi
= (1 − φ)(ρs − ρf )gδi3. (2)

Here ρs and ρl are the densities of the solid and liq-
uid phases, ζx and ηx represent the bulk and shear
viscosities of the matrix, and g represents the accel-
eration due to gravity. Conservation of mass for the
fluid and solid allows us to write the following equa-
tions

ρl[
∂φ

∂t
+ ∇ · (φu)] = M, (3)

and

∇ · [φu + (1 − φ)U] = M
(ρs − ρl)

ρsρl
, (4)

where M is the rate of melting or change of mass from
the solid to the liquid phase with units kg

m3s . The per-
meability, kφ, is given by the following relationship

kφ = k(x, y)(
φ

φ0
)n, (5)

where k(x, y) is a prescribed function of position used
to vary the background permeability while n is taken
to have a value of 3 (McKenzie, 1984).

These equations and appropriate boundary condi-
tions form a closed system for the velocity of the fluid
and matrix as well as the pressure and porosity when
M is a prescribed function. We also consider a case
when melting is a function of an evolving temperature
field. Melting is assumed to occur when the temper-
ature of the fluid exceeds a melting temperature that
is a prescribed function of height, Tm, while D is a
constant that depends on the melting rates. As such,
we calculate melting from

M = D(T − Tm). (6)

The equations were nondimensionalized using
scales for length, velocity, pressure and den-

sity of δc = (kφ0

(1−φ0)(ζx+4/3ηx

µ0

))1/2,
kφ0

∆ρg

µ0

,

∆ρg(
kφ0

(ζx+4/3ηx)

µ0

)1/2, and ρs. Here, φ0 is a ref-
erence porosity and the length scale, δc, represents
the compaction length at the initial porosity. In de-
formable media, deformation over length-scales much
greater than the compaction length is easily accom-
modated while over length scales much less than the
compaction length it is not.

The equations can be written using dimensionless
variables that are given the same names as their di-
mensional counterparts, in a form appropriate for use
in the COMSOL time-dependent, general equation
formula. The flux vector, Γ, is




















−P 0
0 −P

−P + φ′(∂U
∂x + λ′′ ∂V

∂y ) η′φ′(∂U
∂y + ∂V

∂x )

η′φ′(∂U
∂y + ∂V

∂x ) −P + φ′(∂V
∂y + λ′′ ∂U

∂x )

(1 − φ)U + φu (1 − φ)V + φv
φu φv
0 0





















(7)

Here λ′′ = ζx
−2/3ηx

ζx+4/3ηx , η′ = ηx

ζx+4/3ηx and φ′ = (1−φ)
(1−φ0)

.

The source vector, F , is






















φ
kφ

(u − U)
φ
kφ

(v − V )

0
(1 − φ)

−M (1−ρl)
ρl

M
M − D(T − Tm)























(8)

The matrix da has a single non-zero element in the
(6, 6) position and has value ρl.

An energy equation is used to update the tem-
perature and is entered using the COMSOL heat-
transfer transient convection-conduction application
mode and is coupled to the other equations using the
multiphysics capabilities of COMSOL. The nondi-
mensional energy equation takes the following form:

ρCp
∂T

∂t
+[(1−φ)U+φρlCplu]·∇T =

1

Pe
∇k∇T−MS.

(9)
Here the nondimensional effective heat capacity is
ρCp = (1 − φ) + φρlCpl and we have the non-
dimensional parameters Pe and S which are a Peclet
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number measuring the ratio of advective to diffu-
sive transport over the compaction length and a Ste-
fan number measuring the relative importance of the
change in energy due to phase and temperature vari-
ations, respectively.

2.1 Dimensionless parameters

The parameters λ′′ and η′′ characterize the relative
magnitudes of the bulk and shear viscosities of the
matrix and are given fixed values of 1/7 and 3/7
which are typical for geological materials [Richter and

Daly, 1989]. The reference porosity, φ0, has a value of
0.01 which is typical of the upper mantle. Melting is
fast compared with advection while advection is fast
compared with diffusion so D and Pe are given values
of 50 and 10 respectively. The Stefan number, S, is
given a value of 2. The parameters ρl and cpl are the
ratios of liquid to solid densities and heat capacities
and are given the values of 0.833 and 2, respectively.

2.2 Boundary Conditions

The two side boundaries were taken to have reflection
symmetry. At the bottom boundary, fluid was intro-
duced at the fluidization velocity at the reference per-

meability and porosity, v = (1−φ0)2

φ0

, while the solid

matrix was given velocity V = −(1 − φ0). At the
top boundary, the nonhydrostatic pressure and nor-
mal stress for the solid matrix were set to 0. For
calculations where the energy equation was solved,
the temperature was fixed at 1 at the bottom bound-
ary and an outlet flux boundary condition was used
at the top.

3 Results 1, Channels with no

melting

In the first set of calculations, channels were intro-
duced in which the permeability was increased by a
factor of ten over that in the rest of the domain and
M = 0. The high permeability channels were either
the result of using a spatially varying k with con-
stant initial φ or varying φ with constant initial k. In

the absence of a high permeability channel, no com-
paction will occur because the velocity at which the
fluid is injected at the bottom imparts an upward
vertical stress on the matrix that is just sufficient to
balance the downward force arising from the differ-
ence in density between the liquid and solid. The
high permeability channel is bounded on the right at
x = 0.5 and at the top and bottom by y = 0.5 and
1.5.

In figure 1a, we show the permeability field at a
very early time overlain by an arrow plot for the
fluid velocity for a calculation with a constant initial
porosity but spatially varying kφ. The initial position
of the channel is also shown by the white box as it
is in all figures of this type. It can be seen that the
fluid is diverted into the channel. It can also be seen
that the permeability has evolved due to the effects
of compaction. The permeability near the base of the
channel has decreased while near the top, it has in-
creased somewhat. In figure 1b, we show the porosity
field at the same time as well as an arrow plot for the
solid matrix velocity. It can be seen that the poros-
ity is no longer constant and has increased from its
initial value of 0.01 near the top of the channel but
has strongly decreased throughout most of the rest
of the channel. Compaction occurs when fluid flows
from a region of low permeability to high permeabil-
ity such as near the base of the channel. This occurs
because fluid is carried away very efficiently and the
solid matrix must compact in order to fill the result-
ing space. When fluid is flowing from a region of
high permeability to low permeability, such as at the
top of the channel, fluid builds up resulting in de-
compaction and a resulting increase in porosity and
permeability. Because the effects of compaction re-
sult in low permeability regions below previous high
permeability regions and vice-versa, the permeability
field is subject to wave-like phenomena (Spiegelman,
1993) with alternating regions of low and high per-
meability. This wave-like nature can be seen in fig-
ures 2a and 2b where we plot the permeability and
porosity fields at a dimensionless time of 0.07 along
with arrow plots for the fluid velocity (figure 2a) and
solid velocity (figure 2b). The high permeability re-
gion within the channel near y=1 occurs because of
the low permeability region that was formed below
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the high permeability region at the top of the initial
channel. Similarly, there is now a high permeability
region just below the low permeability region that
occurs at the base of the initial channel. It can also
be seen that much of the fluid flow is now being di-
verted around the original channel by the low per-
meability region that develops around the base and
lower side of the channel. At this point, almost equal
quantities of fluid are flowing inside and outside the
channel. It can also be seen that the mean poros-
ity has decreased significantly inside the channel and
the system is evolving towards a state where the per-
meability is roughly the same inside and outside the
channel. Over time, the fluid flow was seen to oscil-
late between being dominantly on the right and left
sides of the simulation domain.

The channel is effectively finished by time 0.07,
which, when scaled to the Earth’s mantle, corre-
sponds to a time of between one month and 2000
years (there are large uncertainties in the compaction
length and fluid velocity in the mantle). Even
the upper bound on these times is geolgically short
and these calculations imply that once channels are
formed in the mantle, they will cause complicated
flow patterns over relatively short time scales. The
initial channels shown have a width of 1 compaction
length, corresponding to between 100 and 1000 m.
Simulations with significantly narrower channels were
also undertaken which were shown to be longer-lived
because the matrix will not compact as much over
very small length scales. However, even in these cal-
culations the channel broke down over geologically
short times. Similar behaviour was also seen when
the initial permeability was greater in the channel
because of higher porosity.

4 Results 2, Temperature In-

duced Melting

For these calculations, we introduce a melting tem-
perature that is a linear, decreasing, function of
height, Tm = 1 − 0.5 ∗ y, which mimics the effects
of decreasing melting temperature with decreasing
pressure. The initial porosity and permeability were

uniform and set to values of 0.01 and 1 and the ini-
tial temperature was equal to the melting tempera-
ture. Fluid was introduced at the base at the flu-
idization velocity and temperature 1. Because the
melting temperature decreases with height, upward
advected fluid will induce melting of the matrix. The
effect of latent heat will decrease the temperature
where melting occurs and when D is large, as it is in
this calculation, the temperature everywhere in the
domain will stay close to the melting temperature.

In figure 3 we show the temperature field after
0.16 units of dimensionless time (corresponding to be-
tween 5 and 5000 years) with an overlain plot of the
fluid velocity. It can be seen that the temperature is
close to the melting temperature except that the con-
tours are bowed upward slightly in two regions where
the vertical fluid flow is anomalously large. In figure 4
we show a plot of the melting rate at the same time.
It can be seen that melting is strongly enhanced in
one region of very strong upwelling near x=0.25 and
is somewhat enhanced in another region of strong up-
welling near x=0.75. In between the spontaneously-
formed channels there are regions where solidification
is occurring. Freezing occurs between the channels
because the downward transport of cold material by
the motion of the solid matrix overwhelms the up-
ward transport of hot fluid in these regions which
bows the temperature contours downward which is
causing the temperature to be less than the melt-
ing temperature in these locations. In figure 5 we
show the permeability field at the same time. It can
be seen that the permeability has been increased by
roughly a factor of 7 over its initial value inside the
channel at x=0.25. The permeability has been de-
creased in-between the channels due to compaction
and freezing. Because there is a net melting in the
simulation domain, a significant degree of compaction
has also taken place at the top of the domain which
has resulted in a high permeability region there. The
formation of the channels occurs because melting in-
creases the porosity of a region which in-turn, in-
creases the permeability. This allows fluid to flow
more freely in the channels which increases the trans-
port of heat to these regions which in-turn leads to
further melting. A similar mechanism for forming
channels has been demonstrated when solute is trans-
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ported vertically and there is a net increase in the
solute solubility with height (Aharonov et al., 1995,
1997; Spiegelman et al., 2001).

5 Conclusions

We have presented a functioning, 2D, model for flow
through a compacting and melting porous layer us-
ing COMSOL. The model was formulated using the
”primitive” equations for transport in a deformable
porous layer. In most previous numerical simulations
of compacting porous media (e.g., Spiegelman et al.,
2001) potential formulations of the problem are used
and the motion of the solid matrix is treated only
approximately.

We have shown that once channels are formed, the
flow in their vicinity becomes very complex and unfo-
cused on geologically short time scales. We have also
shown that channels may be formed spontaneously by
pressure-release melting. In future work, it would be
interesting to extend the analyses presented here to
cylindrical axisymmetric and full three-dimensional
geometries. It will also be interesting to investigate
processes in magma chambers where porosities are
significantly greater and compaction effects are also
very significant.
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Figure 1: a) The permeability after a short period of
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b) The porosity field after a short periods of time with
an overlain arrow plot for the solid matrix velocity.
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Figure 2: The permeability after a dimensionless time
of 0.07 with an overlain arrow plot for the fluid ve-
locity. b) The porosity field after a 0.07 of time with
an overlain arrow plot for the solid matrix velocity.
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Figure 3: The temperature field after a dimensionless
time of 0.16 with an overlain arrow plot for the fluid
velocity.
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Figure 4: The melting rate after a dimensionless time
of 0.16 with an overlain arrow plot for the fluid ve-
locity.
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Figure 5: The permeability after a dimensionless time
of 0.16 with an overlain arrow plot for the fluid ve-
locity.
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