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Lucky Tea House Floors

Tatami mats
Traditional Japanese floor mats made of soft woven
straw. They are either square or have a 1 < 2 aspect
ratio.
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Guest's entrance '

Certain floors, like tea houses, required that no four




Monomer-dimer tiling:

Tile a subset of the
integer lattice with
monomers ( ), and

dimers ( B2 and I).
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tiles meeting at a point.




Monomer-dimer tiling:

Tile a subset of the

integer lattice with

monomers ( ), and

dimers ( B3 and I).

Tatami restriction: No E

tilings allowed with four
tiles meeting at a point.

Graph theory interpretation: In a grid graph G, a
matching M such that G — M contains no 4-cycles.



The trivial tilings

Horizontal “running bond” Vertical *“running bond”



Small tilings

All 44 tatami tilings of the 3 %< 4 grid.
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Happy New Year message, 2010

HAPFY
NEW
YEAR




From Knuth volume 4A, Fascicle 1
First printing, March 2009, Exercise 7.1.4 #215.

215. [21] Japanese tatami mats are 1x 2 rectangles that are traditionally used to cover
rectangular floors in such a way that no four mats meet at any corner. For example,
Fig. 29(a) shows a 6 x 5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jinkoki,

a book first published in 1627.
Find all domino coverings of a chesshoard that are also tatami tilings.

—T
L
Fig. 29. Two nice examples: B T i

(a) A 1Tth-century tatami tiling;  (a) || I ®
(b) a tricolored domino covering. ,J:J’
I ‘ R

Solution

215. This time we add the constraints /\;L S>1(Z;), where Z; is the set of four place-
ments #; that surround an internal corner point. (For example, Z1 = {1, 22, 24, T16}.)
These constraints reduce the ZDD size to 66. There are just two solutions, one the
transpose of the other, and they can readily be found by hand. [See Y. Kotani, Puzzlers’
Tribute (A. K. Peters, 2002), 413-420.]

Congjecture: The generating function for the number of m x n tatami tilings,
when n > m — 2> 0 and m is even, is (1 + 2)2(z™72 4 2™) /(1 — 27" = 2™ 1),



Previous work on tatami tilings:

[—Kotani, 2002: Tatami Tilings, in A Puzzler’s Tribute: A Feast for
the Mind.

[—Hickerson, 2002: OEIS a068920 (and other OEIS entries)
http://www.research.att.com/-njas/sequences/.

[—Knuth, 2009: The Art of Computer Programming, volume 4,
fascicle 1B.

[—R. and Woodcock, 2009: Counting Fixed-Height Tatami Tilings,
Electronic J. of Combinatorics, Paper R126 (2009) 20 pages.

[—Alhazov, Morita, and Iwamoto, 2010: A note on tatami tilings,
Mathematical Foundation of Algorithms and Computer Science,
RIMS KokyUroku series, No. 1691, Research Institute for
Mathematical Sciences, Kyoto, Japan, (2010), 1-7.

[—Erickson, R., Schurch, and Woodcock, 2010: Auspicious
Tatami Mat Arrangements, 16th COCOON Conference, LNCS
6196, pp. 288-297. Updated version to appear in the Electronic
Journal of Combinatorics.


http://www.research.att.com/~njas/sequences/

Larger tilings suggest structure
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What are the consequences of this arrangement?



r

This placement is forced.



i

And this placement is also forced.



As is this.



And this.



Ditto.



Etc.



Until we reach the perimeter.



This a ray. They can go NE, NW, SE, SW.



How do rays start? (The question mark.) Not a
vertical dimer.



Could be a monomer.



A monomer gives a vortex.



A vortex generates four rays.



Could be a horizontal dimer.



Again the placement of many tiles is forced.



A bidimer also generates four rays.



The “beginning” of a ray: =
Not the beginning .



The “beginning” of a ray: =

Not the beginning .

—Case 1, bidimer, two dimers share a long edge:
mi). Occurs anywhere.

vee vortex

loner

bidimer —



The “beginning” of a ray: =

Not the beginning .

—Case 1, bidimer, two dimers share a long edge:
mi). Occurs anywhere.
r—Case 2: monomer at beginning &iJ.
—Case 2(a), vortex: F] Not on boundary.

—Case 2(b), loner: ). Only on boundary.
—Case 2(c), vee: ). Only on boundary.

vee vortex

loner *

bidimer —



A bigger example

The border determines the diagram.



A bigger example

T-diagram

The border determines the diagram.



Tilings with no monomers.

—Let r be the number of rows and ¢ the number
of columns in an r x ¢ rectangle.
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monomers? Denote the number T (r, c, 0).
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to the center.



Tilings with no monomers.

—Let r be the number of rows and ¢ the number
of columns in an r x ¢ rectangle.

—How many tilings, if any, are there with no
monomers? Denote the number T (r, c, 0).

il here are no vortices (obviously).

I 'he bidimers need to be carefully placed, close
to the center.

—If there is one bidimer only, then the dimensions
must have the form n>n, or n < (n + 1), or
n < (n + 2), subject to parity constraints.



Possible tilings with one bidimer:

Odd height:

Even height:

I.IOTI.I




Tatami tilings and compositions
(Hickerson)

Odd: Composition of ¢ into parts of sizes r +1 or r — 1. (Multiply by 2
to get tatami count.)
Example with r = 7:

42=6+6+6+8+8+38
Even: Compositions of ¢ into parts of sizes (r — 2 or r) alternating with

parts of size 1.
Example with r = 8:

2 — 1 4+A4+T1T4+A4+F1T4+2A4+-1T4+294+14+9294+1



Encoding of odd height tilings

8 H . 3




All height r tilings (for odd r = 3)




All height r tilings (for odd r = 3)
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All height r tilings (for odd r = 3)

+g-~
+H+
|+ H+ B and B = |+ []
Bl o

4 1 1 [T

1 [
I+ Q*E - 0+ Q = - O+

+

/e e i
OH+BF mammu—mn

+
+

A =
1
|-

A
B




All height r tilings (for odd r = 3)

N N I = e s S M ==
B =|+Q+§+Q +Q|—'—| I_'_l%l_'_“:‘r:]'
A=|+ |+ B ad B = |+ []
1 1 111 o4 1 1 111
A= |- E|+E Q+; |+ E|+
1 111 [ 1 1
B = |+ Q+E | — E+E Q+E | + E+E
T, = A+B —|
B 1 111 111



All height r tilings (odd)

1 1 . 111 4 .1 1
R =R == B R == R Ei b



All height r tilings (odd)

1 111 1 111 T3 1 1
T= EeEd - BE B B
Substitute:

—1 for |,
—z"! for  and [, and

2" for 5 and []



All height r tilings (odd)
1 111 1 111 T3 1 1
= O+ - 85+ BB 1+E+E
Substitute:

—1 for |,
—z"! for  and [, and

2" for 5 and []

C1 1] C1
Tr(Z) — 1+Zr—l+zr+l ]__(Zr—l_|_zr+l)2|:|1 1+Zr—1+zr+1



All height r tilings (odd)

1 111 1 111 T3 1 1
T= EeEd - BE B B
Substitute:

—1 for |,
—z"! for  and [, and

2" for 5 and []

Ll 11 Ll
Tr(Z) — 1+Zr—l +Zr+l ]__(Zr—l_|_zr+l)2|:|1 1+Zr—1+zr+1
_ (l + 71 4 Zr+1)2
1= (2714712




All height r tilings (odd)

1 111 1 111 T3 1 1
T= EeEd - BE B B
Substitute:

—1 for |,
—z"! for  and [, and

2" for 5 and []

T.(@) = I%|+zr_l + 21 I:Dl:|—(zr_1+z““1)2|:|1 I%I+ PR I
_ (l + Zr—1 + Zr+1)2
1= @ L+zriy
1471 4 70+
1—zr—1—zr+l




Counts by type of dimer (r odd)
With & (r + 1)/2, the coe [cieht of x"y" is the
number of tilings with h horizontal dimers and v
vertical dimers in T,(x,y) below.
[(I=1)y, ((21)? 231
Tr(x,y) = i - yH]E}l)X(Ell)Z(l . X2 )
-y X (1+x251)

Theorem
For r odd, the number of tatami tilings with
k(21— Dd= k(r? — 1)/4 vertical and
k(CF 1)? +j(2CF 1) = k(r — 1)?/4 + jr horizontal
tiles is I |

5 K



Summary: generating functions for tatami
tilings of height r

T (2) =

1—z—23

== PimEi

1— Zr—l — Zr+1

1+2"2+7"

SEmN
h

I Z)l_zr—l_zr+l

ifr=0
ifr=1
ifr=2

ifrodd,3<r<c

ifreven, 4<r<c



Consequences (errata and check)

Page 229 last lines of answer 215 10 Jun 2009
413-420.] ... (1 — 2™ ' — z™*1). A\ 413-420. The set of all tatami tilings has been
characterized by Dean Hickerson; the corresponding generating functions have been

obtained by Frank Ruskey and Jennifer Woodcock, Electronic J. Combinatorics 16,1
(2009), #R126.]




Changing gears!

We were looking at tatami tilings where m = 0 (no
monomers).

Now we look at tatami tilings



What is the maximum number of
monomers?

Assuming r < c,

L1

c+1 ifreven,c odd
max =

C otherwise.




Some 7 < 7 tilings with 7 monomers
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Maximizing monomers in a square

Theorem: There are 2"~ tatami tilings of an
n x n square that use the maximum number of
monomers.
Proof: First, structural preliminaries.
—An n x n tatami tiling has n monomers (0) if

and only if it has no vortices (EM®) or bidimers
().

—An n x n tatami tiling can not have more than
N monomers.

— he trivial tiling has n monomers.

r—Every other tiling with n monomers can be
obtained from the trivial tiling by diagonal flips.

—Every tiling with n monomers has monomers in
two adjacent corners.



Counting part of proof (n even)

Upper corners
fixed,

a diagonal flip,
3 diagonal flips.




Counting part of proof (n even)

Upper corners
fixed,

a diagonal flip,
3 diagonal flips.

e

—Classification: w, e flip up or not?

—if yes, then all flips have the same orientation.
—n — 3 other flips possible.

—Contribution to the count 2 - 2"~3,



Counting part of iroof in even)

If no, then reduce:
Non-trivial example:

w, e can flip down:
Recurrence relation: s(n) =2-2"3+4.s(n —2).




The happy new year message again

HAPPY
NEW
YEAR

... If you are bored, perhaps you will have fun
proving that the number of tilings of an n >< n square
that maximize the number of monomers is n2"1,
Cheers, Frank




Don Knuth e-mail

Dear Frank,

| resisted the challenge in your New Year’s card (about 2"~1n) for more
than four weeks, but finally realized that | couldn’t live any longer
without trying to find out what was going on with those tatami tilings.
| budgeted half a day to explore the problem; and finally figured out
enough of the structure to declare victory after two days; but my
derivation is not at all simple. Certainly | have no way to group the
solutions into, say, n classes of size 2"~ (although | do have lots of
classes of solutions of size 2"~2).

All lots of fun, but | do have to get back to TAOCP!
Cordially, Don

Previously open problem: Give a direct bijective proof that has “n
classes of size 2"~1 (or vice-versa). Solved by Mark Schurch.



Extension to rectangles (r < c)

Theorem

T (r, c, max) is equal to

24 (r +4)(r +2)
2 (r + 3)°
2 5(r + 2)?
Z=* (3r—c+4) (c—r+2)
24 (Br—c+4) (c—r+2)—2"4
26 (29r +17)
F249° (3r—c+4) (c—r+2)

g(Zc —2r+3)2'6
—

1

if r even ,c even ,c >2r +1
ifrodd,c>2r+1
ifreven,codd,c>2r+1
ifr=cmod2andr+1<sc<s2r+1
ifrodd,ceven,r+2<c<2r
ifrodd,ceven,c=r+1

ifrevenc odd,r+1<c<2r+1
ifr=c



Monomers arbitrary, but r fixed

For height r =3
Let A(c) be the number of 3xc Big
tilings which start with the blue iyl uiil

A —1) ACc—2) Al —23) A —4) Bc—2)

tile shown on the right. Recurrences for ~ A(c)
Similarly for B(c) and &> [ Hh m m] mh
C (C) B(c—1) Ac—2) Al —2) Blc—1) Alc—3) Al —3)

Recurrences for  B(c) Recurrences for  C(c)



Monomers arbitrary, but r fixed

For height r =3
Let A(c) be the number of 3xc Big
tilings which start with the blue iyl uiil

A —1) ACc—2) Al —23) A —4) Bc—2)

tile shown on the right. Recurrences for ~ A(c)

Similarly for B(c) and &> [ Hh m m] mh

C (C) B(c—1) AC—2) AC—2) B(c—1) AC—3) Al —23)
Recurrences for  B(c) Recurrences for  C(c)

A(c)=A(c—1)+A(c—2)+A(c—3)+A(c —4)+B(c—2),
B(c) =B(c —2) + 2A(c — 2),
C(c) =B(c — 1)+ 2A(c — 3).



This is a linear recurrence relation in A, B, C so we have
rational generating functions.

The number of tilings with r rows and ¢ columns is the
coe Lcieht of z€ in the generating function T,(z).



This is a linear recurrence relation in A, B, C so we have
rational generating functions.

The number of tilings with r rows and ¢ columns is the
coe Lcieht of z€ in the generating function T,(z).

Theorem
For height r = 1, 2, 3 the generating functions T,(z) are

1 1+2z2—728
Tl(z)zl—z—zz’ TZ(Z):1—22—223+24’ and

1+27+822+3283—624—32°—425+22" + 28

Ta(2) = 1—z—272—27%4+ 75+ 26




This is a linear recurrence relation in A, B, C so we have
rational generating functions.

The number of tilings with r rows and ¢ columns is the
coe Lcieht of z€ in the generating function T,(z).

Theorem
For height r = 1, 2, 3 the generating functions T,(z) are

1 1+2z2—728
Tl(z)zl—z—zz’ TZ(Z):1—22—223+24’ and

1+27+822+3283—624—32°—425+22" + 28

Ta(2) = 1—2—222—22%+ 25+ 25

Note that the denominators are (almost)
self-reciprocal. Open: Why is this true?



The g.f. for n = 10, from Maple

T10(2) = (2242% +

2802%4—547%3—7682%2— ... (terms omitted) - --—3270z'° +
1239z°—3570z® + 1814z7—2824z° + 8152°—46762—6782° +
424022 + 88z +1) / (2°°—z%°—z° +2°3—-72 + 7170 +
Z49_Z48_4Z47 + 4246_16245 + 15244 + 243_242 +
17241172 + 33z%9—232%8 + 412°7 + 77%°—-27% +
66234—6623 + 18232—182%1—78230 + 68229—120z2% +

68227 —782%°—18z% + 18z%*—662%® + 662%2—2z%' + 7z%° +
41719—-23718 + 33217 —172%0 + 1775714 + 713 +
15z212—16z1 +4z19—479—28 +77—2%+2°—72* + 73 —7?—z +1)



A table of the numbers

. ‘1 2 3 4 5 6 7 8 9 10
1 1 2 3 5 8 18 21 34 55 89
2 2 6 13 29 68 186 357 821 1886 4330
3 3 13 22 44 90 196 406 852 1778 3740
4 5 29 44 66 126 238 490 922 1714 3306
5 8 68 90 126 178 325 584 1165 2030 3619
6 13 156 196 238 325 450 827 1404 2828 4603
7 21 357 406 490 584 827 1090 1914 3262 6228
8 34 821 852 922 1165 1404 1914 2562 4618 7450
9 55 1886 1778 1714 2030 2828 3262 4618 5890 10130
10 89 4330 3740 3306 3619 4603 6228 7450 10130 13314

—Note that the numbers are non-monotone.
—How fast are they growing?



Asymptotics
The roots of the denominator of T,(z) are
. 1 — Y — /., 1,00

51—51 —2§and%1+3¢ +2 3 .

The one WI%]I the smallest modulus is

1 1 v_ _
§=, 1+ 3— 23 =0435420544682339. ..

i

B
Asymptotically,
—PPA/B) a0 _ n
T(2,n) [ F = 1.0607...(2.2966. ..
@) F=f B ( )

The corresponding value of 1/ for T3(z) is
2.0953: - -.



r Pr Or Coe Lciehts of the Denominator
Num. | Den. (ascending degree)

1 1 2 1,-1,1

2 3 4 1,—-2,0,-2,1

3 8 6 1,-1,-2,0,-2,1,1

4 14 11 -1,1,1,1,-1, ,1,-1,-1,-1,1

5 18 14 -1,1,1,-1,3,-1,5,-2,-5,-1,-3,-1,-1,1,1

1,-1,-1,1,-1,-2,2,-10,9,—1,4,6,

6 27 22 4,-1,9,-10,2,—2,-1,1,-1,-1,1

1,-1,-3,3,4,—4,-9,7,6,—5, 2,0,
’ 28 22 2,5,6,—7,—9,4,4,-3,-3,1,1
-1,1,1,-1,1,-1,1,3,-3,13,—-12,0,0, —12,
8 44 37 6, —20,—86, 2, ,—2,6,20,—6,12,0,0, 12,
-13,3,-3,-1,1,-1,1,-1,-1,1
-1,1,1,-1,1,-1,1,-1,5,-3,11, -8, —6, 4,

9 50 42 —14,8,-20,2,—28,2,—24,10,24,2,28,2,20,8
14,4,6,-8,—-11,-3,—-5,-1,-1,-1,-1,-1,-1,1,1
1,-1,-1,1,-1,1,-1,1,-1,—4,4,-16,15,1, -1,

10! 65 56 17,—-17,33,—23,41,7,—2,66, —66, 18, —18, —78, 68, :

68, —78, —18, 18, —66, 66, —2,7, 41, —23, 33, —17,
17,-1,1,15,-16,4,—4,-1,1,-1,1,-1,1,-1,-1,1,




Conjectures: Let T,(z) := P,(2)/Q;(z2), where
P.(z) and Q,(z) are relatively prime polynomials,

and g, := deg(Qr(2)).

L1

71Q,(+1/2) if r = 0(4)

=z"Q(—1/z) ifr=1(4

=2 Q, (+1/2) if r = 2(4)

FZUQ,(=1/2) if r = 3(4)

Let s = kX2
1
_ 1+s+2s2  ifr=0,23()
I 2+2s+2s2 ifr=1(4)



Open Problem

Conjecture: For all k =0 and m = 1 there is an
No such that, for all n = ng where n(n + k) and m
have the same parity,

T(n+k,n,m)=T(ng + k, ng, m).

Example (k =0,m = 1): . .
T(n,n,1) =8+ 2 =10 for all

n=3.




Formula for m monomers in a square

—l'he k = 0 case (is true):
The number of n %< n tatami tilings with m
monomers, m =nmod 2, and m <n, is

T(n,n,m) = (m+ 1)2™* + m2™.

—Example: Whenm =1, we get 2-22+2 =10
(previous slide).



Counting by type of dimer
et K,(z) be the polynomial whose i-th coe [cieht is the number
of n > n tilings with n monomers and that contain i vertical dimers.
C—For example:
Ki1(z) = 2(1+2)°(1+2%)*(1—z+z?) (1 +2) (A—z+2%—2%+2%) (2)
= 03(2)®;(2)P6(2)Ps(2)P10(2)! (2)
where 1(z) is irreducible and ®4(z) is the d-cyclotomic polynomial.
C—Knuth: “... so something is indeed going on, cyclotomically!”
L_Conjecture: For n even,
—1
Kn(2) = (@) Sma—1r2z),
=1

where 1,(z) is an irreducible polynomial and

Sh(2)=(Q+2)--1+z") = qazjéjj I?z).
j=1

j=



More tatami problems

Given an arbitrary shaped grid, what is the
minimum number of monomers in a tatami tiling?

Is there a polynomial-time algorithm to determine
the answer?



More tatami problems

Given an arbitrary shaped grid, what is the
minimum number of monomers in a tatami tiling?

Is there a polynomial-time algorithm to determine
the answer?



Tomography
Is it possible to tile a grid with these row and
qumn projections? What is the complexity of this?

g

i i




Alejandro’s flash game

Play this flash game at
http://miniurl.org/tomoku.


http://miniurl.org/tomoku

Magnetic water strider problem

r—Strider legs can not cross.
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—How many striders can be placed?




Magnetic water strider problem

<

—$trider legs can not cross.
—How many striders can be placed?
—Find a minimum strider maximal configuration.




Magnetic water strider problem

<

—$trider legs can not cross.

—How many striders can be placed?

—Find a minimum strider maximal configuration.
r—Game: players take turns placing striders.




Lozenge Tatami Tilings?

—I'his work done together with Jen Debroni.

—We consider lozenge tilings of n by m by k
hexagons.

—With no constraints, the number of tilings has
a beautiful formula (MacMahon):

-

I +)+[F2

Le(k,n,m) =

i=1j=1 =1

—I'he number of lozenges that can meet at a
grid point is 3, 4, 5, or 6.

32 F 4



ri3(k,n,m)isOunlessk =n=m = 1.
ri4(k,nm)=k+n+m-—1.

I he interesting case is Ls(k, n, m).
—1(1,1,n)=n+ 1.
1(2,2,n) = 55(1 + n)(12 + 18n + 5n* + n®).

r—Conjecture: For fixed k and m the value
L(k, m,n) is a polynomial in n of degree km.



Thanks for coming!
Any questions?
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